THE ROLE OF PUBLISHERS IN REPRODUCIBLE RESEARCH

STM Beyond Open Access seminar, December 5th 2014

Iain Hrynaszkiewicz
Head of Data and HSS Publishing, Open Research
Nature Publishing Group & Palgrave Macmillan

iain.hrynaszkiewicz@nature.com
@iainh_z
Beyond open access: Reproducibility

- Open access is a means not the end
- Open access (to papers) is just part of the solution
- Also need code, data, protocols – and research reported in sufficient detail to enable others to understand and repeat
Irreproducibility: underlying issues

(Mis)conduct
Publication bias and refutations – where?
Experimental design
Statistics
Lab supervision and training
Pressure to publish

Reporting and sharing information
Gels, microscopy images
Animal studies description
Methods description
Data deposition
Irreproducibility: all sciences

Miguel et al. (2014). **Promoting transparency in social science research.** *Science (New York, N.Y.),* 343(6166), 30–1. doi:10.1126/science.1245317

Recommendations include:
- Preregistration of studies
- Better reporting guidelines
- Sharing of data
Reproducibility: role of publishers

“Scholarly publishers have an important role in encouraging and mandating the availability of data and...developing innovative mechanisms and platforms for sharing and publishing products of research”

Reproducibility: role of publishers

- Content
- Policies
- Incentives
- Licenses
- Access
- Reliability

Image credit: DS Pugh [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons. http://commons.wikimedia.org/wiki/File%3AHarlow_Carr_-_geograph.org.uk_-_32309.jpg
Reproducibility: role of publishers

- Content
- Policies
- Incentives
- Licenses
- Access
- Reliability

Image credit: DS Pugh [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons. http://commons.wikimedia.org/wiki/File%3AHarlow_Carr_-_geograph.org.uk_-_32309.jpg
Reproducibility: Content

• **Format**
 • Open, standardized XML for articles in PubMed Central; optimal files types for data

• **Amount**
 • Methodological detail and transparent reporting

• **Types**
 • Methods, protocols, data and software papers/journals, short reports, extended reports, updates etc
Reproducibility: Content - examples

• Removal of limitations on Methods sections at Nature journals
• New types of journal and publication...
Role of data journals/articles

• Credit
• Unpublished data
• Peer review focus
• Value of data vs. analysis
• Discoverability
• Reusability
• Narrative/context
• “Intelligently open data”
Data, data (journals) everywhere?
Featured Data Descriptor

Long-read, whole-genome shotgun sequence data for five model organisms
Kim et al. | 25th November 2014

Third-generation sequencing technologies provide data with unique characteristics including very long read lengths. Here, the authors share high-quality genomic sequencing data from the Pacific Biosciences platform for organisms with storied histories in biological research, ranging from the simple to the complex.

Latest content

Data Descriptor | 25 November 2014
Multi-channel EEG recordings during 3,936 grasp and lift trials with varying weight and friction
Matthew D Luciw, Ewa Jarocka & Benoni B Edin

Data Descriptor | 25 November 2014
Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise
Kristian Viisling & Peter Schjerling

Data Descriptor | 25 November 2014
DNA methylation temporal profiling following peripheral versus central nervous system anatomy
Riccio Lindner, Radhika Puttagunta & Simone Di
Get Credit for Sharing Your Data
Publications will be indexed and citeable.

Open-access
Creative Commons licenses (CC-BY/CC-BY-NC) for the main Data Descriptor. Each publication supported by CCO metadata.

Focused on Data Reuse
All the information others need to reuse the data; no interpretative analysis, or hypothesis testing.

Peer-reviewed
Rigorous peer-review focused on technical data quality and reuse value.

Promoting Community Data Repositories
Not a new data repository; data stored in community data repositories.
Neuroscience

- New Dataset
- Data in OpenfMRI
- Source code in GitHub
- Big Data

A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

Michael Hanke, Florian J. Baumgartner, Pierre Ibe, Falko R. Kaule, Stefan Pollmann, Oliver Speck, Wolfg Zinke & Jörg Stadler

Affiliations | Contributions | Corresponding author

Scientific Data 1, Article number: 140003 | doi: 10.1038/sdata.2014.3
Received 04 November 2013 | Accepted 22 January 2014 | Published online 27 May 2014

Data Citations

- Abstract
- Background & Summary
- Methods
- Data Records
- Technical Validation
- Usage Notes
- Additional Information
- References
- Data Citations
- Acknowledgements
- Author Information
- Supplementary information

Additional resources:

- More information and updates are made available at: http://www.studyforrest.org
- Source code repository: http://github.com/hanke/gumpdata
- Documentation for the source code: http://gumpdata.readthedocs.org
Reproducibility: Policies

- Adherence to reporting and minimum information standards
 - Checklists and enforcement
- Data deposition
- Data and materials sharing
- Encouraging better practice
 - Encourage publication of Data Descriptors
Mandates aren’t always enough

2002: Nature journals mandate deposition of MIAME-compliant microarray data
2006: compliance issues identified

Ioannidis et al., Nat Gen 41, 2, 149 (2009)

Repeatability of published microarray gene expression analyses

John P A Ioannidis¹–³, David B Allison⁴, Catherine A Ball⁵, Issa Coulibaly⁴, Xiangqin Cui⁴, Aedín C Culhane⁶,⁷, Mario Falchi⁸,⁹, Cesare Furlanello¹⁰, Laurence Game¹¹, Giuseppe Jurman¹⁰, Jon Mangion¹¹, Tapan Mehta⁴, Michael Nitzberg⁵, Grier P Page⁴,¹², Enrico Petretto¹¹,¹³ & Vera van Noort¹⁴

Of 18 papers published in Nat Gen in 2005-2006, 10 analyses could not be reproduced, 6 only partially.
Announcement: Reducing our irreproducibility

24 April 2013

Raising standards

Facilitating reproducibility

Raising reporting standards

Nature journals’ updated editorial policies aim to improve transparency and reproducibility.

Raising standards

Nature Biotechnology and other Nature journals are updating editorial policies with the aim of improving transparency and reproducibility.

Raising standards

Enhancing reproducibility
Reproducibility: Policies

Data-access practices strengthened

In our continued drive for reproducibility, *Nature* and the Nature research journals are strengthening our editorial links with the journal *Scientific Data* and enhancing our data-availability practices. We believe that this initiative will improve support for authors looking for appropriate public repositories for their research data, and will increase the availability of information needed for the reuse and validation of those data.

In 2013, Nature journals introduced new editorial measures to promote reproducibility, and we continue to evaluate their impact and refine our policies. Our newly strengthened data-availability practices (go.nature.com/o5ykhe) reflect our preference that data be deposited in public repositories, and encourage researchers to expand on work published in the Nature journals by publishing further information in *Scientific Data*.

Community-supported, specialized data repositories are usually the best way to share large data sets. General, unstructured repositories, such as figshare and Dryad, provide options where no community repository exists, and are preferable to publishing data as Supplementary Information. Supplementary materials have size limitations and do not always provide optimal file and viewing formats, particularly for large and complex data sets. But where no repository—or publication focused on detailed descriptions of data sets—exists, supplementary materials have often been the best option.

Scientific Data (go.nature.com/iyu9qh), which launched this year, offers authors another way to maximize the value of their data sets for further research—for themselves and for the scientific community.

Its primary article type, the Data Descriptor, provides more detail to improve the data’s discoverability, interpretability and reusability—as well as allowing the highest credit to be given to the authors who created the data set.

We are now rolling out a new process under which, when they accept a manuscript containing appropriate data sets, editors of *Nature* and *Nature* research journals will encourage authors to submit the data sets to *Scientific Data* as a Data Descriptor (go.nature.com/utfvfo).

Authors may also submit a Data Descriptor manuscript alongside a manuscript for a Nature journal. If appropriate, they could publish the descriptor first, without compromising the novelty of future primary-research articles based on the data. In these cases, authors are encouraged to consult with the editor of their target journal to ensure that prior publication of a Data Descriptor is acceptable. (Note that other publishers may have different policies.)

Scientific Data’s peer-review and in-house curation processes focus on ease of reuse. A data-curation editor reviews data files, checks their format, archiving and annotations, and works with authors to produce a standardized, machine-readable summary of the study in the ISA-Tab format (S. Sansone et al. *Nature Genet.* **44**, 121–126; 2012).

Data Descriptors can accommodate all data types, including raw data and updated data sets generated after initial publication. They can also show the controls required for validation of the data set, which may have been excluded from the primary paper because of space limitations. *Scientific Data*’s editorial process assesses repositories and helps to ensure that data are placed in the correct one. *Nature*’s enhanced data-availability policy now directs authors to a list of approved repositories (go.nature.com/pmj768).

Several articles published in *Nature* research journals already have complementary articles in *Scientific Data* (such as A. Baud et al. *Sci. Data* **1**, 140011 (2014) and F. Roquét et al. *Sci. Data* **1**, 140028; 2014). As science evolves and produces ever-increasing amounts of data, those data must be collected, organized, curated, quality-checked and made available on the right platform so that they can be easily discovered and reused. Stronger links with *Scientific Data* and our data-availability practices aim to achieve this.
Reproducibility: Data policy examples

- Data sharing statements in published papers (*Annals Internal Medicine, BMJ* [non-clinical trials]*)
- Data sharing implied by submission (BMC min. requirement)
- Data sharing as a condition of publication (Nature journals min. requirement)
- Mandated data sharing as a condition of publication (PLOS)
- Mandated data sharing with statement and link in article (ecology journals signed up to joint data archiving policy)
- Mandated open data as a condition of submission (*Scientific Data, F1000Research*)
Reproducibility: Incentives

- Data and code citation
- Data articles and journals
- Recognising reproducibility – challenges, awards
- Demonstrating impact
Reproducibility: Licenses

Articles: Creative Commons licenses

Metadata: released under the **CC0 waiver** to maximize reuse and aid data miners

Data: depends on public repositories. Some repositories e.g. figshare and Dryad both use the **CC0 waiver**.
Reproducibility: Access

• Discoverability and links to other digital products of research
• Links between papers
 • Nature ENCODE Explorer
 • Threaded publications (BMC/Crossref/Others)
• Repository partnerships
• Integration with tools e.g. document authoring, data management, Lab notebooks
Reproducibility: Reliability

- Peer review and editorial process – focus on reproducibility
- Correcting the record
- Evaluating effectiveness of policies
Reproducibility: Reliability - example

Peer review at *Scientific Data* focuses on:

- Completeness (can others reproduce?)
- Consistency (were community standards followed?)
- Integrity (are data in the best repository?)
- Experimental rigour and technical quality (were the methods sound?)

Does not focus on:

- Perceived impact/importance
- Size/complexity of data
Implementation of Nature checklist

Onerous:
Authors, referees, editors, copyeditors

Referees:
We are not yet sure whether they are paying much attention

Authors:
Some papers submitted with checklist without prompt
Many have embraced source data

Improves reporting
We have commissioned an external assessment of the impact
The list may be driving changes in experimental design
Thank you

For more information please contact

IAIN HRYNASZKIEWICZ
Head of Data and HSS Publishing, Open Research

M: +44 (0)7814 290576
T: +44 (0)207 0146753
E: iain.hrynaszkiewicz@nature.com