TEXT MINING FOR TAXONOMY CONSTRUCTION

Using Text Analytics for Term Discovery

Bob Kasenchak
Director of Business Development
Access Innovations
@taxobob
www.accessinn.com
bob_kasenchak@accessinn.com

STM Annual U.S. Conference 2016
Washington, D.C.
Text and Data Mining Panel
Taxonomists Hate Him!

Discover thousands of terms using this one WEIRD trick!

LEARN THE TRUTH NOW
GOALS

• Given a large corpus of (structured or unstructured) text, to derive the important concepts...
• In order to construct a taxonomy (or thesaurus, etc.)...
• For document tagging/retrieval
 – (and other applications)
GOALS
Structured vs. Unstructured Text

Structured Text

• Easier to work with
• Can target relevant fields (e.g., Titles or Abstracts) with high semantic relevancy
• Leaner results

Unstructured Text

• More results
• More noise
• Still, can often eliminate predictable, undesirable sections
 – References
 – Bibliography, etc.
Methodology

I. Execute \(n\)-gram analysis
 I. ...of titles? Abstracts? Full text?
II. Frequency sorting
III. Discard noise
IV. Cut off long tail
V. Human curation
 I. Identify relevant concepts (text strings)
 II. Remove conceptual duplicates
 I. Choose preferred version of concept/term
 II. Capture variants as synonyms/NPTs
n-gram Analysis

n-grams are **ordered** strings of some number (1, 2, 3...n) of objects – in this case: words extracted from a body of text

For example, consider the sentence:

“Principles of numerical taxonomy”
n-gram Analysis

<table>
<thead>
<tr>
<th>1-grams</th>
<th>2-grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>principles</td>
<td>principles of numerical</td>
</tr>
<tr>
<td>of</td>
<td>of numerical taxonomy</td>
</tr>
<tr>
<td>numerical</td>
<td>numerical taxonomy</td>
</tr>
<tr>
<td>taxonomy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-grams</th>
<th>4-grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>principles of</td>
<td>Principles of numerical</td>
</tr>
<tr>
<td>numerical</td>
<td>taxonomy</td>
</tr>
<tr>
<td>of</td>
<td></td>
</tr>
<tr>
<td>numerical</td>
<td></td>
</tr>
<tr>
<td>taxonomy</td>
<td></td>
</tr>
</tbody>
</table>
n-gram Analysis

...but instead of a single sentence, we have, e.g.:

• 30,000 articles on healthcare
• 900,000 articles on physics (AIP)
• 65,000 standards (BSI)
• 285,000 patents (USA PO 2014 domestic filings)
• ...or some other very large content corpus
n-gram Analysis

Frequency 1-Grams
- 11415 health
- 9827 care
- 2767 medical
- 2264 patients
- 2254 quality
- 2254 patients
- 1955 medicare
- 1823 use
- 1521 new
- 1518 hospital
- 1480 patient
- 1480 insurance
- 1479 primary
- 1427 states
- 1369 costs
- 1284 spending
- 1265 united
- 1234 policy
- 1234 national
- 1219 medicaid
- 1196 study
- 1195 cost
- 1174 public
- 1153 more
- 1153 impact
- 1135 outcomes
- 1123 physician
- 1093 program
- 1084 disease
- 1075 drug

Frequency 2-Grams
- 3041 health care
- 1136 primary care
- 977 united states
- 760 health insurance
- 450 health information
- 440 affordable care
- 436 electronic health
- 431 emergency department
- 406 systematic review
- 393 mental health
- 390 quality care
- 379 care act
- 376 public health
- 329 medical home
- 300 accountable care
- 287 comparative effectiveness
- 284 health reform
- 277 health spending
- 274 managed care
- 267 patientcentered medical
- 267 medical care
- 267 public health
- 267 healthcare system
- 262 information technology
- 251 health records
- 240 national health
- 235 health care:
- 226 quality improvement
- 226 nursing home
- 216 care system

Frequency 3-Grams
- 374 affordable care act
- 234 electronic health records
- 194 health information technology
- 190 health care system
- 185 health care spending
- 171 health care reform
- 169 type 2 diabetes
- 160 comparative effectiveness research
- 159 randomized controlled trial
- 158 patientcentered medical home
- 149 electronic health record
- 134 health care costs
- 133 accountable care organizations
- 130 primary care physicians
- 106 health insurance coverage
- 95 acute myocardial infarction
- 84 valuebased insurance design
- 84 medicare part d
- 80 health care delivery
- 76 emergency department visits
- 75 quality health care
- 74 coronary heart disease
- 70 under affordable care
- 70 protection affordable care
- 70 patient protection affordable
- 70 mental health care
- 70 health care quality
- 68 nursing home residents

Frequency 4-Grams
- 70 patient protection affordable care
- 66 under affordable care act
- 52 computerized physician order entry
- 49 use electronic health records
- 47 < p > the affordable care act
- 46 protection affordable care act
- 45 presidentâ€™s emergency plan aids
- 43 special health care needs
- 43 children special health care
- 38 regional variations medicare spending
- 38 implications regional variations medicare
- 37 triple aim: care health
- 37 emergency plan aids relief
- 37 aim: care health cost
- 36 childrenâ€™s health insurance program
- 36 affordable care act 2010
- 35 variations medicare spending part
- 33 centers medicare medicaid services
- 29 patientcentered outcomes research institute
- 28 use health information technology
- 28 preventive services task force
- 28 adoption electronic health records
- 27 quality health care delivered
- 27 health care delivered adults
- 27 electronic health record systems
- 27 delivered adults united states
- 27 care delivered adults united
- 26 content quality accessibility care
n-gram Analysis

<table>
<thead>
<tr>
<th>Frequency</th>
<th>All Grams</th>
<th>n-grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>11415</td>
<td>health</td>
<td>1,048,576</td>
</tr>
<tr>
<td>9827</td>
<td>care</td>
<td></td>
</tr>
<tr>
<td>3041</td>
<td>health care</td>
<td></td>
</tr>
<tr>
<td>2767</td>
<td>medical</td>
<td></td>
</tr>
<tr>
<td>2264</td>
<td>patients</td>
<td></td>
</tr>
<tr>
<td>2254</td>
<td>quality</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>medicare</td>
<td></td>
</tr>
<tr>
<td>1823</td>
<td>use</td>
<td></td>
</tr>
<tr>
<td>1521</td>
<td>new</td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td>hospital</td>
<td></td>
</tr>
<tr>
<td>1480</td>
<td>patient</td>
<td></td>
</tr>
<tr>
<td>1480</td>
<td>insurance</td>
<td></td>
</tr>
<tr>
<td>1479</td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>1427</td>
<td>states</td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>costs</td>
<td></td>
</tr>
<tr>
<td>1284</td>
<td>spending</td>
<td></td>
</tr>
<tr>
<td>1265</td>
<td>united</td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td>policy</td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td>national</td>
<td></td>
</tr>
</tbody>
</table>

Highest frequency 11,415

Frequency=1 892,609

Frequency= <6 1,028,224

Frequency= <11 1,040,282

Frequency= <26 1,045,482

Frequency= >11 8294

Frequency= >26 3094
Curating the Raw Data

- Cut off long tail
- Target frequent, well-formed terms/concepts
- Discard noise
- Remove conceptual duplicates
 - And compound fragments
- Identify relevant concepts; save duplicates as synonyms

Result is a list of candidates.
Curating the Raw Data

- 1-grams are not the most useful
 - But require review, some good stuff there
- 2-, 3-, and 4- grams yield the most good terms
- 5-grams +: worth looking at, but low value
 - “Single-photon emission computed tomography”

An SME should review the terms when you’re done, so don’t worry about getting the technical vocabulary 100% correct.
From Candidate Terms to Taxonomy

Result: list of candidate terms/concepts

Next steps:
• Resolve conceptual duplicates
 – Capture synonyms
• Build hierarchy
• Build out term records
• SME review
TEXT MINING FOR TAXONOMY
CONSTRUCTION

Thank You – Questions/Discussion to Follow

Bob Kasenbach
Director of Business Development
Access Innovations
@taxobob
www.accessinn.com
bob_kasenchak@accessinn.com

STM Annual U.S. Conference 2016
Washington, D.C.
Text and Data Mining Panel